happy-scikit-segmentation-build
Command-line
usage: happy-scikit-segmentation-build [-h] -d HAPPY_DATA_BASE_DIR
[-P PREPROCESSORS] [-S PIXEL_SELECTORS]
[-m SEGMENTATION_METHOD]
[-p SEGMENTATION_PARAMS] -t
TARGET_VALUE -s HAPPY_SPLITTER_FILE -o
OUTPUT_FOLDER [-r REPEAT_NUM]
[-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
Evaluate segmentation model on Happy Data using specified splits and pixel
selector.
optional arguments:
-h, --help show this help message and exit
-d HAPPY_DATA_BASE_DIR, --happy_data_base_dir HAPPY_DATA_BASE_DIR
Directory containing the Happy Data files (default:
None)
-P PREPROCESSORS, --preprocessors PREPROCESSORS
The preprocessors to apply to the data (default: )
-S PIXEL_SELECTORS, --pixel_selectors PIXEL_SELECTORS
The pixel selectors to use. (default: ps-simple -n
32767)
-m SEGMENTATION_METHOD, --segmentation_method SEGMENTATION_METHOD
Segmentation method name (e.g., randomforestclassifier
,gradientboostingclassifier,adaboostclassifier,kneighb
orsclassifier,decisiontreeclassifier,gaussiannb,logist
icregression,mlpclassifier,svm,random_forest,knn,decis
ion_tree,gradient_boosting,naive_bayes,logistic_regres
sion,neural_network,adaboost,extra_trees or full class
name) (default: svm)
-p SEGMENTATION_PARAMS, --segmentation_params SEGMENTATION_PARAMS
JSON string containing segmentation parameters
(default: {})
-t TARGET_VALUE, --target_value TARGET_VALUE
Target value column name (default: None)
-s HAPPY_SPLITTER_FILE, --happy_splitter_file HAPPY_SPLITTER_FILE
Happy Splitter file (default: None)
-o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
Output JSON file to store the predictions (default:
None)
-r REPEAT_NUM, --repeat_num REPEAT_NUM
Repeat number (default: 0) (default: 0)
-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
The logging level to use. (default: WARN)